

Welcome to Cointrader’s documentation!

Contents:

	Cointrader
	Features

	Planned

	Motivation

	Credits

	Installation
	Stable release

	From sources

	Configuration

	Usage
	Trading

	Balance

	Explore

	Exchange

	Backtesting

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.5.0 (not yet released)

	0.4.0 (2017-03-16)

	0.3.1 (2017-03-11)

	0.3.0 (2017-03-02)

	0.2.0 (2017-02-26)

	0.1.0 (2017-02-21)

Indices and tables

	Index

	Module Index

	Search Page

Cointrader

[image: _images/cointrader.svg]
 [https://pypi.python.org/pypi/cointrader][image: _images/cointrader1.svg]
 [https://travis-ci.org/toirl/cointrader][image: _images/ef487c2c01d4491e91dec5b8490214ee.svg]
 [https://www.codacy.com/app/torsten/cointrader?utm_source=github.com&utm_medium=referral&utm_content=toirl/cointrader&utm_campaign=Badge_Grade][image: Documentation Status]
 [https://cointrader.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/toirl/cointrader/]Cointraider development has stopped! If you are interested in continuing
the development please write me an email.

Cointrader is a CLI trading application for crypto currencies on
the Poloniex [https://poloniex.com] exchange written in the Python programming language.
Cointrader can be used for semiautomatic guided trading.

It is released under the MIT License and Copyright 2017 by Torsten Irländer.
The license text ist distributed in full text in the LICENSE file that should
have come with your installation or git clone.

Danger

You could loose money. Use cointrader at your own risk! I do not
accept any responsibility for any losses.

Cointrader is Alpha quality! It is not meant to be used for serious
trading yet. It is still in an early development phase and has a bunch
full of known defects. Expect all aspects of the application to
change in the future. Cointrader is not roundly tested.

If you want to help cointrader to become the best Free Software
trading bot your contribution is highly appreciated! Find details on
how to participate in the
documentation [https://cointrader.readthedocs.io/en/latest/contributing.html].

	Status: Alpha

	Free software: MIT license

	Source: https://github.com/toirl/cointrader

	Documentation: https://cointrader.readthedocs.io

If you like the program, I am looking forward to a donation :)

	DASH: XypsuUMRTioV7bHSVzSDkNgihtr1gfiqAr

	BTC : 1L5xtVirGVpDL7958SPaHb6p9dHZoaQ2Cz

Features

	Automatic trading. Cointrader will buy and sell following emitted
trading signals.

	Semiautomatic trading. Cointrader just emits trading signals. You finally
decide if you want to follow the signals.

	Paper trading. Just simlate trading. Do not actually place real orders.

	Trade logbook

	Profit/Loss analysis (Bot vs. Market)

	Backtesting. Check how good your strategy performs on historic charts.

	Explore exchanges and find interesting markets to trade on.

	Show your balances.

Planned

	Implement a working trading strategy!

	Support more exchanges

	Pluggable external trading strategies

	Risk- and Money management, Stop loss limits, Take profit limits

Motivation

This program exists because I want to learn more about automatic trading
based on a technical analysis of charts.
I am no expert on trading or crypto currencies! I am a professional
Python programmer who stuck his nose into the crypto coin and trading world in
2017 and who was directly fascinated on this topic. After reading some books
on technical analysis I decided to write this program to learn more about
how automatic trading works.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Cointrader, run this command in your terminal:

$ pip install cointrader

This is the preferred method to install Cointrader, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Cointrader can be downloaded from the Github repo [https://github.com/toirl/cointrader].

You can either clone the public repository:

$ git clone git://github.com/toirl/cointrader

Or download the tarball [https://github.com/toirl/cointrader/tarball/master]:

$ curl -OL https://github.com/toirl/cointrader/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Configuration

Contraider uses a configuration file to set some important settings like the
key and the secret for the API on the configured exchange. A configuration
looks like this and must be located in your $HOME directory with the filename
.cointrader.ini. Please make sure you have created a configuration file.:

[DEFAULT]
Set default exchange which will be used for trading.
Currently onyl Poloniex is supported!
exchange = poloniex

[poloniex]
See https://poloniex.com/apiKeys for more details.
api_key = YOUR-API-KEY-HERE
api_secret = YOUR-API-SECRET-HERE

#
Default logging configuration of the application.
#
[loggers]
keys = root, cointrader

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = ERROR
handlers = console

[logger_cointrader]
level = INFO
handlers =
qualname = cointrader

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

Usage

The cointrader application is CLI application and provides some basic commands
which are hopefully useful for your daily trading activity.

To get general help to the application please use the help flag:

cointrader --help

Trading

You can start trading by using the following command. Cointrader expects a
valid currency pair as argument and the start amount of BTC to the start
command. Please not that the naming of the currency pair is depended on the
configured exchange.:

cointrader start BTC_DASH

Cointrader will try to load a previously created bot for the given market from
the database and build the current state of the bot from the trade log. If no
bot can be loaded a new bot will be created.

You can restrict the amount of coins and BTC the bot will use on trading by
setting the –btc or –coins parameter. This will set the the initial
amount of BTC and coins the bot will use for trading. Tip: You can use
the Exchange to calculate the amount of BTC from given dollar.

Warning

On default cointrader will use use the complete available amount of BTC and
coins for trading for the new bot! Make sure you restrict the amount
of coins and BTC the bot will use for trading!

With no further options cointrader will work on a chart with a resolution of
30min. The resolution can be changed by using the –resolution option.

You can set a timeframe to define the trading time of cointrader.
A start and end of the timeframe can be set by using the –start and –end
option which takes a datetime argument in the format “YYYY-MM-DD HH:MM:SS”.
On default cointrader will start to trade immediately and will trade until you
stop cointrader.

Cointrader use different trading strategies. You can choose which strategy to
use by setting the –strategy option. On default cointrader will use a very
defensive “Wait-Strategy” which will only emit “Wait” signals. So no buys or
sells a replaced.

Note

Cointrader currently has no working trading strategy. It is the
current objectiv of the defvelopment to come up with a working
profitable strategy.

Trading can be done in backtest mode. To start trading in backtest
mode set the –backtest flag. See Backtesting for more details.

Paper Trade

A paper trade is a simulated trade. Cointrader can simlate buying and selling
coins without actual involiving real money. This is great to test you trading
strategy without any risk.
To start cointrader in paper trade mode you must set the –papertrade flag.

Interactive trading

Without any further arguments cointrader will start an interactive trading
session. Cointrader will emit trading signals (BUY, WAIT, SELL) and waits for
your decision what to do.

Automatic trading

If you want to start your trading session in a automatic session you can set
the –automatic flag. Cointrader will then automatically take action on the
emitted trading signals. In automatic mode the resolution will determine
between two trading actions.

Balance

Cointrader can show your current balance at the configured exchange by
invoking the balance command:

contrader balance

This will give you an output like this:

CUR total btc_value

DASH: 14.34446293 0.34583237
BTC : 0.04910656 0.04910656

TOTAL BTC: 0.39493893
TOTAL USD: 465.392085719

Explore

Cointrader can explore the different markets on the given exchange and will
result the most interesting markets to trade on for the last 24H:

contrader explore

On default cointrader will look for the top three volume and profit markets and
only lists those markets which are in the top three in both categories. The command
will give you an output like this:

BTC_DASH 4.47% 2190.7 https://poloniex.com/exchange#btc_dash
BTC_ETH 3.21% 5138.0 https://poloniex.com/exchange#btc_eth

If the command gives no output means that there are no markets in the top three
which met bot criteria. In this situation you can either use the –top
attribute to increase the amount of markets which are considered as interesting.

Alternatively you can use the –order-by-volume and –order-by-profit flag
to only look on profit or volume markets.

Exchange

Exchange is a simple helper command to calculate how many BTC you get for a
certain amount of USD:

cointrader change 50 2.Mär.17 23.09
-> 50.0$ ~ 0.03999086BTC # 2017-03-02

Backtesting

Backtesting is the act of testing a strategy on real chart data from the past.
This can be used to measure the performance of your trading strategy in
comparison to the market.

Doing backtests with cointrader is easy by setting the –backtest flag:

cointrader start \
 --backtest \
 --strategy Trend \
 --resolution 2h \
 --automatic \
 --coins 10 \
 --start "2017-03-18 00:00:00" \
 --end "2017-03-21 19:00:00" \
 BTC_DASH

Despite of this single flag the bot will work as usual. It will trade on the
given market for the defined timeframe and resolution. After the backtest has
finished a small statistic on this trading run is shown:

2017-03-21 22:18:39,411 INFO [cointrader.bot][MainThread] Creating new bot BTC_DASH
2017-03-21 22:18:40,405 INFO [cointrader.bot][MainThread] 2017-03-18 00:00:00: INIT 0.0 BTC 10.0 COINS
2017-03-21 22:18:40,604 INFO [cointrader.bot][MainThread] 2017-03-21 00:00:00: SELL 10.0 @ 0.09662999 earned -> 0.966058325025 BTC
2017-03-21 22:18:40,662 INFO [cointrader.bot][MainThread] Backtest finished

At the end the tradelog will be displayed to see the trading activity of the
bot:

Tradelog:
+---------------------+------+------------+-------+--------+-----+----------------+
| DATE | TYPE | RATE | COINS | COINS' | BTC | BTC' |
+---------------------+------+------------+-------+--------+-----+----------------+
| 2017-03-18 00:00:00 | INIT | 0.0881 | 10.0 | -- | 0.0 | -- |
| 2017-03-21 00:00:00 | SELL | 0.09662999 | 10.0 | -- | -- | 0.966058325025 |
+---------------------+------+------------+-------+--------+-----+----------------+

And finally a statistic of the performance of the strategy is shown:

Statistic:
+------------+---------------------+---------------------+----------+
| | 2017-03-18 00:00:00 | 2017-03-21 18:00:00 | CHANGE % |
+------------+---------------------+---------------------+----------+
| COINTRADER | 0.881 | 0.966058325025 | 8.8047 |
| MARKET | 0.881 | 0.8361 | -5.3702 |
+------------+---------------------+---------------------+----------+

The statistic compares the performance of the bot with the market evaluation.
This is done by comparing BTC values. The value is defined as:

value = amount of coins * rate + btc

The rate refers to the current rate of the market at the begin and the end of
the timeframe.

This makes it easy to see if the bot makes more or less money for you.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/toirl/cointrader/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Cointrader could always use more documentation, whether as part of the
official Cointrader docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/toirl/cointrader/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cointrader for local development.

	Fork the cointrader repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/cointrader.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv cointrader
$ cd cointrader/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 cointrader tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/toirl/cointrader/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_cointrader

Credits

Development Lead

	Torsten Irländer <torsten.irlaender@googlemail.com>

Contributors

None yet. Why not be the first?

History

0.5.0 (not yet released)

Overall code refectoring. Moved indicators into its own modul. Cleanup
strategy code and reworked the interctive mode.

New Features:

	Added option to detach a bot into automatic mode and to reatach a bot into
intercativ mode.

Other:

	
	Make bot more robust against wrong user input

	
	Check given market name

	Check given resolution

0.4.0 (2017-03-16)

First version with real trading functionality. However cointrader has no
working trading strategy yet. So the default strategy will do nothing than
waiting :). However you can use the interactive mode to buy and sell coins if
you want to.

	Added automatic trading. Cointrader will follow the emitted signals from the
strategy.

	Added Papertrading. Do trading without any risk. Cointrader will simulate
trading.

	Added Tradelog.

0.3.1 (2017-03-11)

Bugfix release.

	Fixed issue #4 (https://github.com/toirl/cointrader/issues/4)
- Use absolute imports.
- Renamed contrader modul into bot to prevent namespace issues.
- Added missing requirement of the ‘requests’ package.

0.3.0 (2017-03-02)

	Added backtest functionality. Cointrader can simulate trading in
backtest mode. In this mode the trade is done on historic chart data. This
is useful to check the performance of your trading strategy. Please note
that the backtest is not 100% accurate as buy and sell prices are based on the
closing price of the currency. This is idealistic and will not reflect the
whole market situation.

	Added new “exchange” command. Can be used to calculate how many BTC you get
for a certain amount of USD.

0.2.0 (2017-02-26)

	Improved “Usage” documentation

	Changed format of configuration file from JSON to standard python
configuration file (.ini)

	Added “balance” command

	Added “explore” command

0.1.0 (2017-02-21)

	First release on PyPI

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cointrader	

 	
 	
 cointrader.bot	

 	
 	
 cointrader.chart	

 	
 	
 cointrader.cli	

 	
 	
 cointrader.config	

 	
 	
 cointrader.exchange	

 	
 	
 cointrader.exchanges	

 	
 	
 cointrader.exchanges.poloniex	

 	
 	
 cointrader.helpers	

 	
 	
 cointrader.strategies	

 	
 	
 cointrader.strategy	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	active (cointrader.bot.Cointrader attribute)

 	add_fee() (in module cointrader.exchange)

 	amount (cointrader.bot.Trade attribute)

 	amount_taxed (cointrader.bot.Trade attribute)

 	
 	Api (class in cointrader.exchanges.poloniex)

 	api (cointrader.config.Config attribute)

 	ApiError

 	automatic (cointrader.bot.Cointrader attribute)

B

 	
 	Backtest

 	BacktestMarket (class in cointrader.exchange)

 	balance() (cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

 	book() (cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

 	bot_id (cointrader.bot.Trade attribute)

 	
 	btc (cointrader.bot.Trade attribute)

 	btc2dollar() (cointrader.exchange.Poloniex method)

 	btc_taxed (cointrader.bot.Trade attribute)

 	buy() (cointrader.exchange.BacktestMarket method)

 	(cointrader.exchange.Market method)

 	(cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

C

 	
 	Chart (class in cointrader.chart)

 	chart() (cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

 	chart2csv() (in module cointrader.chart)

 	close (cointrader.chart.Chart attribute)

 	Coin (class in cointrader.exchange)

 	Cointrader (class in cointrader.bot)

 	cointrader (module)

 	cointrader.bot (module)

 	cointrader.chart (module)

 	cointrader.cli (module)

 	cointrader.config (module)

 	
 	cointrader.exchange (module)

 	cointrader.exchanges (module)

 	cointrader.exchanges.poloniex (module)

 	cointrader.helpers (module)

 	cointrader.strategies (module)

 	cointrader.strategy (module)

 	colorize_value() (in module cointrader.helpers)

 	Config (class in cointrader.config)

 	Context (class in cointrader.cli)

 	continue_backtest() (cointrader.exchange.BacktestMarket method)

 	create_bot() (in module cointrader.bot)

 	created (cointrader.bot.Cointrader attribute)

 	currency (cointrader.exchange.Market attribute)

D

 	
 	data (cointrader.chart.Chart attribute)

 	date (cointrader.bot.Trade attribute)

 	(cointrader.chart.Chart attribute)

 	
 	dollar2btc() (cointrader.exchange.Poloniex method)

E

 	
 	ema() (cointrader.chart.Chart method)

 	
 	Exchange (class in cointrader.exchange)

 	ExchangeException

F

 	
 	Followtrend (class in cointrader.strategy)

G

 	
 	get_balance() (cointrader.exchange.Poloniex method)

 	get_bot() (in module cointrader.bot)

 	get_chart() (cointrader.exchange.BacktestMarket method)

 	(cointrader.exchange.Market method)

 	get_first_point() (cointrader.chart.Chart method)

 	get_last_buy() (cointrader.bot.Cointrader method)

 	
 	get_last_point() (cointrader.chart.Chart method)

 	get_last_sell() (cointrader.bot.Cointrader method)

 	get_market_name() (in module cointrader.exchange)

 	get_path_to_config() (in module cointrader.config)

 	get_top_markets() (cointrader.exchange.Exchange method)

 	get_top_profit_markets() (cointrader.exchange.Exchange method)

 	get_top_volume_markets() (cointrader.exchange.Exchange method)

I

 	
 	id (cointrader.bot.Cointrader attribute)

 	(cointrader.bot.Trade attribute)

 	init_db() (in module cointrader.bot)

 	
 	interactive trading

 	is_valid_market() (cointrader.exchange.Exchange method)

 	is_valid_resolution() (cointrader.exchange.Exchange method)

K

 	
 	Klondike (class in cointrader.strategy)

L

 	
 	load_bot() (in module cointrader.bot)

M

 	
 	macdh() (cointrader.chart.Chart method)

 	MAKER_FEE (cointrader.exchanges.poloniex.Poloniex attribute)

 	Market (class in cointrader.exchange)

 	
 	market (cointrader.bot.Cointrader attribute)

 	(cointrader.bot.Trade attribute)

 	markets (cointrader.exchange.Exchange attribute)

N

 	
 	NullStrategy (class in cointrader.strategy)

O

 	
 	order_id (cointrader.bot.Trade attribute)

 	
 	order_type (cointrader.bot.Trade attribute)

P

 	
 	Papertrading

 	
 	Poloniex (class in cointrader.exchange)

 	(class in cointrader.exchanges.poloniex)

R

 	
 	rate (cointrader.bot.Trade attribute)

 	render_bot_statistic() (in module cointrader.helpers)

 	render_bot_title() (in module cointrader.helpers)

 	render_bot_tradelog() (in module cointrader.helpers)

 	
 	render_signal_detail() (in module cointrader.helpers)

 	render_user_options() (in module cointrader.helpers)

 	replay_tradelog() (in module cointrader.bot)

 	resolution2seconds() (cointrader.exchange.Exchange method)

 	resolutions (cointrader.exchange.Exchange attribute)

S

 	
 	search_chartdata_by_date() (in module cointrader.chart)

 	sell() (cointrader.exchange.BacktestMarket method)

 	(cointrader.exchange.Market method)

 	(cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

 	signal() (cointrader.strategy.Followtrend method)

 	(cointrader.strategy.Klondike method)

 	(cointrader.strategy.NullStrategy method)

 	(cointrader.strategy.Strategy method)

 	
 	signals (cointrader.strategy.Strategy attribute)

 	sma() (cointrader.chart.Chart method)

 	start() (cointrader.bot.Cointrader method)

 	stat() (cointrader.bot.Cointrader method)

 	Strategy

 	(class in cointrader.strategy)

 	strategy (cointrader.bot.Cointrader attribute)

T

 	
 	TAKER_FEE (cointrader.exchanges.poloniex.Poloniex attribute)

 	ticker() (cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

 	total_btc_value (cointrader.exchange.Exchange attribute)

 	
 	total_euro_value (cointrader.exchange.Exchange attribute)

 	totimestamp() (in module cointrader.exchanges.poloniex)

 	Trade (class in cointrader.bot)

 	trade_id (cointrader.bot.Trade attribute)

 	trades (cointrader.bot.Cointrader attribute)

U

 	
 	url (cointrader.exchange.Exchange attribute)

 	(cointrader.exchange.Market attribute)

 	(cointrader.exchange.Poloniex attribute)

V

 	
 	value (cointrader.exchange.Coin attribute)

 	values() (cointrader.chart.Chart method)

 	
 	volume() (cointrader.exchanges.poloniex.Api method)

 	(cointrader.exchanges.poloniex.Poloniex method)

cointrader.exchanges package

Submodules

cointrader.exchanges.poloniex module

	
class cointrader.exchanges.poloniex.Api(config)

	Bases: object

Docstring for Api.

	
balance()

	

	
book(currency)

	

	
buy(market, amount, price, option=None)

	Places a limit buy order in a given market. Required POST
parameters are “currencyPair”, “rate”, and “amount”. If
successful, the method will return the order number. Sample
output:

{"orderNumber":31226040,"resultingTrades":[{"amount":"338.8732","date":"2014-10-18
23:03:21","rate":"0.00000173","total":"0.00058625","tradeID":"16164","type":"buy"}]}

‘total’ is the amount of btc after applying the fee of the order.
This is the amount of BTC you actually used in the the order.

You may optionally set “fillOrKill”, “immediateOrCancel”,
“postOnly” to 1. A fill-or-kill order will either fill in its
entirety or be completely aborted. An immediate-or-cancel order
can be partially or completely filled, but any portion of the
order that cannot be filled immediately will be canceled rather
than left on the order book. A post-only order will only be
placed if no portion of it fills immediately; this guarantees
you will never pay the taker fee on any
part of the order that fills.

	Market

	Currency pair like BTC_DASH.

	Amount

	How many coins do you want to buy

	Price

	For which price do you want to buy?

	Option

	See docsstring for more details

	Returns

	Dict with details on order.

	
chart(currency, start, end, period=1800)

	

	
sell(market, amount, price=None)

	Places a limit sell order in a given market. Required POST
parameters are “currencyPair”, “rate”, and “amount”. If
successful, the method will return the order number. Sample
output:

{"orderNumber":31226040,"resultingTrades":[{"amount":"338.8732","date":"2014-10-18
23:03:21","rate":"0.00000173","total":"0.00058625","tradeID":"16164","type":"sell"}]}

‘total’ is the amount of btc after applying the fee of the order.
This is the amount of BTC you actually used in the the order.

You may optionally set “fillOrKill”, “immediateOrCancel”,
“postOnly” to 1. A fill-or-kill order will either fill in its
entirety or be completely aborted. An immediate-or-cancel order
can be partially or completely filled, but any portion of the
order that cannot be filled immediately will be canceled rather
than left on the order book. A post-only order will only be
placed if no portion of it fills immediately; this guarantees
you will never pay the taker fee on any
part of the order that fills.

	Market

	Currency pair like BTC_DASH.

	Amount

	How many coins do you want to buy

	Price

	For which price do you want to buy?

	Option

	See docsstring for more details

	Returns

	Dict with details on order.

	
ticker(currency=None)

	

	
volume(currency=None)

	

	
exception cointrader.exchanges.poloniex.ApiError

	Bases: exceptions.ValueError

	
class cointrader.exchanges.poloniex.Poloniex(config)

	Bases: cointrader.exchanges.poloniex.Api

	
MAKER_FEE = 0

	

	
TAKER_FEE = 0

	

	
balance()

	Returns the balance of the given currency. If not currency is
given the balance of all currency are returned.

	
book(currency)

	Returns the order book for a given market, as well as a sequence
number for use with the Push API and an indicator specifying
whether the market is frozen. You may set currencyPair to “all”
to get the order books of all markets. Sample output:

{"asks":[[0.00007600,1164],[0.00007620,1300], ...],
 "bids":[[0.00006901,200],[0.00006900,408], ...],
 "isFrozen": 0, "seq": 18849}

	
buy(market, amount, price, option)

	Places a limit buy order in a given market. Required POST
parameters are “currencyPair”, “rate”, and “amount”. If
successful, the method will return the order number. Sample
output:

{"orderNumber":31226040,"resultingTrades":[{"amount":"338.8732","date":"2014-10-18
23:03:21","rate":"0.00000173","total":"0.00058625","tradeID":"16164","type":"buy"}]}

‘total’ is the amount of btc after applying the fee of the order.
This is the amount of BTC you actually used in the the order.

You may optionally set “fillOrKill”, “immediateOrCancel”,
“postOnly” to 1. A fill-or-kill order will either fill in its
entirety or be completely aborted. An immediate-or-cancel order
can be partially or completely filled, but any portion of the
order that cannot be filled immediately will be canceled rather
than left on the order book. A post-only order will only be
placed if no portion of it fills immediately; this guarantees
you will never pay the taker fee on any
part of the order that fills.

	Market

	Currency pair like BTC_DASH.

	Amount

	How many coins do you want to buy

	Price

	For which price do you want to buy?

	Option

	See docsstring for more details

	Returns

	Dict with details on order.

	
chart(currency, start, end, period=1800)

	Returns candlestick chart data. Required GET parameters are
“currencyPair”, “period” (candlestick period in seconds; valid
values are 300, 900, 1800, 7200, 14400, and 86400), “start”, and
“end”. “Start” and “end” are given in UNIX timestamp format and
used to specify the date range for the data returned.

On the default the chart for the last day with a period of 30
minutes is returned.

Sample output:

[{"date":1405699200,
 "high":0.0045388,
 "low":0.00403001,
 "open":0.00404545,
 "close":0.00427592,
 "volume":44.11655644,
 "quoteVolume":10259.29079097,
 "weightedAverage":0.00430015},
 ...]

https://poloniex.com/public?command=returnChartData¤cyPair=BTC_XMR&start=1405699200&end=9999999999&period=14400

	
sell(market, amount, price, option=None)

	Places a limit sell order in a given market. Required POST
parameters are “currencyPair”, “rate”, and “amount”. If
successful, the method will return the order number. Sample
output:

{"orderNumber":31226040,"resultingTrades":[{"amount":"338.8732","date":"2014-10-18
23:03:21","rate":"0.00000173","total":"0.00058625","tradeID":"16164","type":"sell"}]}

‘total’ is the amount of btc after applying the fee of the order.
This is the amount of BTC you actually used in the the order.

You may optionally set “fillOrKill”, “immediateOrCancel”,
“postOnly” to 1. A fill-or-kill order will either fill in its
entirety or be completely aborted. An immediate-or-cancel order
can be partially or completely filled, but any portion of the
order that cannot be filled immediately will be canceled rather
than left on the order book. A post-only order will only be
placed if no portion of it fills immediately; this guarantees
you will never pay the taker fee on any
part of the order that fills.

	Market

	Currency pair like BTC_DASH.

	Amount

	How many coins do you want to buy

	Price

	For which price do you want to buy?

	Option

	See docsstring for more details

	Returns

	Dict with details on order.

	
ticker(currency=None)

	Returns the ticker of the given currency pair. If no pair is given
the volume of all markets are returned.

Example output:

{
 "BTC_LTC":{"last":"0.0251",
 "lowestAsk":"0.02589999",
 "highestBid":"0.0251",
 "percentChange":"0.02390438",
 "baseVolume":"6.16485315",
 "quoteVolume":"245.82513926"},
 ...
}

	
volume(currency=None)

	Returns the volume of the given currency. If not currency is given
the volume of all currency are returned.

Example output:

{"BTC_LTC":{"BTC":"2.23248854",
 "LTC":"87.10381314"},
 "BTC_NXT":{"BTC":"0.981616","NXT":"14145"},
 ...}

	
cointrader.exchanges.poloniex.totimestamp(dt)

	

Module contents

cointrader.strategies package

Submodules

cointrader.strategies.trend module

cointrader.strategies.momentum module

Module contents

cointrader package

Subpackages

	cointrader.exchanges package
	Submodules

	cointrader.exchanges.poloniex module

	Module contents

	cointrader.strategies package
	Submodules

	cointrader.strategies.trend module

	cointrader.strategies.momentum module

	Module contents

Submodules

cointrader.bot module

	
class cointrader.bot.Cointrader(market, strategy, resolution='30m', start=None, end=None, automatic=False)

	Bases: sqlalchemy.ext.declarative.api.Base

	
active

	

	
automatic

	

	
created

	

	
get_last_buy()

	

	
get_last_sell()

	

	
id

	

	
market

	

	
start(backtest=False, automatic=False)

	Start the bot and begin trading with given amount of BTC.

The bot will trigger a analysis of the chart every N seconds.
The default number of seconds is set on initialisation using the
resolution option. You can overwrite this setting
by using the interval option.

By setting the backtest option the trade will be simulated on
real chart data. This is useful for testing to see how good
your strategy performs.

	Btc

	Amount of BTC to start trading with

	Backtest

	Simulate trading on historic chart data on the given market.

	Returns

	None

	
stat(delete_trades=False)

	Returns a dictionary with some statistic of the performance
of the bot. Performance means how good cointrader performs in
comparison to the market movement. Market movement is measured
by looking at the start- and end rate of the chart.

The performance of cointrader is measured by looking at the
start and end value of the trade. These values are also
multiplied with the start and end rate. So if cointrader does
some good decisions and increases eater btc or amount of coins
of the bot the performance should be better.

	
strategy

	

	
trades

	

	
class cointrader.bot.Trade(date, order_type, order_id, trade_id, market, rate, amount, amount_taxed, btc, btc_taxed)

	Bases: sqlalchemy.ext.declarative.api.Base

All trades of cointrader are saved in the database. A trade can either be a BUY or SELL.

	
amount

	

	
amount_taxed

	

	
bot_id

	

	
btc

	

	
btc_taxed

	

	
date

	

	
id

	

	
market

	

	
order_id

	

	
order_type

	

	
rate

	

	
trade_id

	

	
cointrader.bot.create_bot(market, strategy, resolution, start, end, btc, amount)

	Will create a new bot instance.

	
cointrader.bot.get_bot(market, strategy, resolution, start, end, btc, amount)

	Will load or create a bot instance.
The bot will operate with the given resolution on the market using
the specified strategy.

The start and end
The bot is equipped with a specified amount of coins and btc for
trading. If no btc or amount is specified (None), the bot will be
initialised with all available coins on the given market.

	Market

	Market instance

	Strategy

	Strategy instance

	Resolution

	Resolution in seconds the bot will operate on the market.

	Start

	Datetime where the bot will start to operate

	End

	Datetime where the bot will end to operate

	Btc

	Amount of BTC the Bot will be initialised with

	Amount

	Amount of Coins (eg. Dash, Ripple) the Bot will be initialised with

	Returns

	

	
cointrader.bot.init_db()

	

	
cointrader.bot.load_bot(market, strategy, resolution, start, end)

	Will load an existing bot from the database. While loading the
bot will replay its trades from the trade log to set the available btc
and coins for further trading.

Beside the btc and amount of coins all other aspects of the coin
like the time frame and strategy are defined by the user. They are
not loaded from the database.

	
cointrader.bot.replay_tradelog(trades)

	

cointrader.chart module

	
class cointrader.chart.Chart(data, start, end)

	Bases: object

The chart provides a unified interface to the chart data. It also
gives access so some common indicators like macd, sma and ema.

The data is provided as list of dictionaries where each
dictionary represents a single set of data per point in the
chart:

{
 u'date': 1500112800,
 u'open': 0.07132169,
 u'close': 0.07162004,
 u'high': 0.07172972,
 u'low': 0.07114623,
 u'volume': 7.49372245,
 u'quoteVolume': 104.69114835,
 u'weightedAverage': 0.07157933,
}

The start and end datetimes define the relevant timeframe of
the chart for later profit calculations. This date range is
needed as the chart itself cointains more more datapoints than
within the given date range. This is because we need more data
to ensure that indicators like ema and sma provide sensefull
values right on from the begin of the timeframe. So there must
be more data available before the start.

	
close

	

	
data

	

	
date

	

	
ema(window=10)

	

	
get_first_point()

	

	
get_last_point()

	

	
macdh()

	

	
sma(window=10)

	

	
values(which='close')

	

	
cointrader.chart.chart2csv(chart)

	

	
cointrader.chart.search_chartdata_by_date(data, dt, le=True)

	

cointrader.cli module

	
class cointrader.cli.Context

	Bases: object

Docstring for Context.

cointrader.config module

	
class cointrader.config.Config(configfile=None)

	Bases: object

	
api

	

	
cointrader.config.get_path_to_config()

	

cointrader.exchange module

	
class cointrader.exchange.BacktestMarket(exchange, name)

	Bases: cointrader.exchange.Market

Market to enable backtesting a strategy on the market.

	
buy(btc, price=None)

	Will buy coins on the market for the given amount of BTC. On
default we will make a market order which means we will try to
buy for the best price available. If price is given the order
will be placed for at the given price. You can optionally
provide some options. See
cointrader.exchanges.poloniex.api for more details.

	Btc

	Amount of BTC

	Price

	Optionally price for which you want to buy

	Option

	Optionally some buy options

	Returns

	Dict witch details on the order.

	
continue_backtest()

	

	
get_chart(resolution='30m', start=None, end=None)

	Will return a chart of the market.

You can provide a resolution of the chart. On default the
chart will have a resolution of 30m.

You can define a different timeframe by providing a start and
end point. On default the the chart will include the last
recent data.

	Resolution

	Resolution of the chart (Default 30m)

	Start

	Start of the chart data (Default Now)

	End

	End of the chart data (Default Now)

	Returns

	Chart instance.

	
sell(amount, price=None)

	

	
class cointrader.exchange.Coin(name, quantity, btc_value=None)

	Bases: object

Docstring for Coin.

	
value

	

	
class cointrader.exchange.Exchange(config, api=None)

	Bases: object

Baseclass for all exchanges

	
get_top_markets(markets, limit=10)

	

	
get_top_profit_markets(markets=None, limit=10)

	

	
get_top_volume_markets(markets=None, limit=10)

	

	
is_valid_market(market)

	

	
is_valid_resolution(resolution)

	

	
markets

	

	
resolution2seconds(resolution)

	

	
resolutions = {'15m': 900, '24h': 86400, '2h': 7200, '30m': 1800, '4h': 14400, '5m': 300}

	

	
total_btc_value

	

	
total_euro_value

	

	
url

	

	
exception cointrader.exchange.ExchangeException

	Bases: exceptions.Exception

	
class cointrader.exchange.Market(exchange, name, dry_run=False)

	Bases: object

Docstring for Market.

	
buy(btc, price=None, option=None)

	Will buy coins on the market for the given amount of BTC. On
default we will make a market order which means we will try to
buy for the best price available. If price is given the order
will be placed for at the given price. You can optionally
provide some options. See
cointrader.exchanges.poloniex.api for more details.

	Btc

	Amount of BTC

	Price

	Optionally price for which you want to buy

	Option

	Optionally some buy options

	Returns

	Dict witch details on the order.

	
currency

	

	
get_chart(resolution='30m', start=None, end=None)

	Will return a chart of the market.

You can provide a resolution of the chart. On default the
chart will have a resolution of 30m.

You can define a different timeframe by providing a start and
end point. On default the the chart will include the last
recent data.

	Resolution

	Resolution of the chart (Default 30m)

	Start

	Start of the chart data (Default Now)

	End

	End of the chart data (Default Now)

	Returns

	Chart instance.

	
sell(amount, price=None, option=None)

	

	
url

	

	
class cointrader.exchange.Poloniex(config)

	Bases: cointrader.exchange.Exchange

	
btc2dollar(amount)

	

	
dollar2btc(amount)

	

	
get_balance(currency=None)

	

	
url

	

	
cointrader.exchange.add_fee(btc, fee=0.025)

	

	
cointrader.exchange.get_market_name(market)

	

cointrader.helpers module

	
cointrader.helpers.colorize_value(value)

	

	
cointrader.helpers.render_bot_statistic(stat)

	

	
cointrader.helpers.render_bot_title(bot, market, chart)

	

	
cointrader.helpers.render_bot_tradelog(trades)

	

	
cointrader.helpers.render_signal_detail(signal)

	

	
cointrader.helpers.render_user_options(options)

	

cointrader.strategy module

	
class cointrader.strategy.Followtrend

	Bases: cointrader.strategy.Strategy

Simple trend follow strategie.

	
signal(chart)

	Will return either a BUY, SELL or WAIT signal for the given
market

	
class cointrader.strategy.Klondike

	Bases: cointrader.strategy.Strategy

	
signal(chart)

	Will return either a BUY, SELL or WAIT signal for the given
market

	
class cointrader.strategy.NullStrategy

	Bases: cointrader.strategy.Strategy

The NullStrategy does nothing than WAIT. It will emit not BUY or
SELL signal and is therefor the default strategy when starting
cointrader to protect the user from loosing money by accident.

	
signal(chart)

	Will return either a BUY, SELL or WAIT signal for the given
market

	
class cointrader.strategy.Strategy

	Bases: object

Docstring for Strategy.

	
signal(chart)

	Will return either a BUY, SELL or WAIT signal for the given
market

	
signals = None

	Dictionary with details on the signal(s)
{“indicator”: {“signal”: 1, “details”: Foo}}

Module contents

cointrader

	cointrader package
	Subpackages
	cointrader.exchanges package
	Submodules

	cointrader.exchanges.poloniex module

	Module contents

	cointrader.strategies package
	Submodules

	cointrader.strategies.trend module

	cointrader.strategies.momentum module

	Module contents

	Submodules

	cointrader.bot module

	cointrader.chart module

	cointrader.cli module

	cointrader.config module

	cointrader.exchange module

	cointrader.helpers module

	cointrader.strategy module

	Module contents

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cointrader’s documentation!

 		
 Cointrader

 		
 Features

 		
 Planned

 		
 Motivation

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Configuration

 		
 Usage

 		
 Trading

 		
 Paper Trade

 		
 Interactive trading

 		
 Automatic trading

 		
 Balance

 		
 Explore

 		
 Exchange

 		
 Backtesting

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.5.0 (not yet released)

 		
 0.4.0 (2017-03-16)

 		
 0.3.1 (2017-03-11)

 		
 0.3.0 (2017-03-02)

 		
 0.2.0 (2017-02-26)

 		
 0.1.0 (2017-02-21)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

